The Application of Monte Carlo Simulation Based on Normal Inverse Gaussian Distribution in Option Pricing

نویسندگان

  • WEN-XIU GONG
  • LING-YUN GAO
چکیده

Options is an important financial derivative products, therefore it is important to reasonable pricing. According to the financial asset returns typically exhibit the feature of aiguilles large remaining part and hypothesis, it obeys normal inverse Gaussian distribution, using Monte Carlo simulation based on normal inverse Gaussian distribution on its pricing and improving it by antithesis variable. Finally, the conclusion is that the improved method is an effective method for option pricing through the empirical test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Monte Carlo Simulation in the Assessment of European Call Options

In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...

متن کامل

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

A Quasi-monte Carlo Algorithm for the Normal Inverse Gaussian Distribution and Valuation of Financial Derivatives

We propose a quasi-Monte Carlo (qMC) algorithm to simulate variates from the normal inverse Gaussian (NIG) distribution. The algorithm is based on a Monte Carlo technique found in Rydberg (Rydberg 1997), and is based on sampling three independent uniform variables. We apply the algorithm to three problems appearing in finance. First, we consider the valuation of plain vanilla call options and A...

متن کامل

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

Approximations for weighted Kolmogorov-Smirnov distributions via boundary crossing probabilities

A statistical application to Gene Set Enrichment Analysis implies calculating the distribution of themaximum of a certain Gaussian process, which is a modification of the standard Brownian bridge. Using the transformation into a boundary crossing problem for the Brownian motion and a piecewise linear boundary, it is proved that the desired distribution can be approximated by an n-dimensional Ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015